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Stochastic resonance in noisy maps as dynamical threshold-crossing systems
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Interplay of noise and periodic modulation of system parameters for the logistic map in the region after the
first bifurcation and for the kicked spin model with Ising anisotropy and damping is considered. For both maps
two distinct symmetric states are present that correspond to different phases of the period-2 orbit of the logistic
map and to disjoint attractors of the spin map. The periodic force modulates the transition probabilities from
any state to the opposite one symmetrically. It follows that the maps behave as threshold-crossing systems with
internal dynamics, and stochastic resonance~maximum of the signal-to-noise ratio in the signal reflecting the
occurrence of jumps between the symmetric states! in both models is observed. Numerical simulations agree
qualitatively with analytic results based on the adiabatic theory.

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

Stochastic resonance~SR! is a nonlinear phenomenon i
which the transmission of a coherent signal by certain s
tems can be improved by the addition of noise to the sys
@1#. The essence of the phenomenon is that even a w
periodic signal which can be undetectable in the absenc
noise can be detected in the presence of optimum noise,
in a bistable system one can observe a strong periodic c
ponent in the process of switching between two states@2#.
Then the output power spectrum density~PSD! S( f ) will
consist of peaks located at the multiples of the periodic s
nal frequencyf 0, superimposed on the noise backgrou
SN( f ). As a measure of SR the signal-to-noise ratio~SNR! is
often used, defined as SNR5SP( f 0)/SN( f 0), whereSP( f 0)
5S( f 0)2SN( f 0) is the first peak height. SR was observ
experimentally and predicted theoretically in a large vari
of systems, including optical systems@3,4#, sensory neurons
@5,6#, signal transmission in ion channels@7#, chaotic sys-
tems@8–10#, electronic circuits@11#, etc., to list only a few
~for recent review see Ref.@12#!.

Although first observations of SR were obtained for d
namical systems with bistable potentials@1–3#, recently
there has been a growing interest in the investigation of
in dynamical and nondynamical threshold-crossing~TC! sys-
tems@5,6,13–18#. TC systems are often referred to as exc
able systems@5,6# because their outputs consist of pulses t
can be emitted each time the noisy input crosses s
threshold. The important feature of SR in TC systems i
different kind of signals that are observed as compared
‘‘conventional’’ SR in bistable systems. In fact, noise in T
systems is optimized to increase the periodicity of su
events as pulses or jumpsbetweenaccessible states once p
period of the periodic part of the input but not the periodic
of occupationof such states. It follows that TC systems i
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clude both monostable and bistable models; in the latter c
they can exhibit SR even if the conventional SR cannot
observed.

In the present paper we demonstrate that SR is possib
discrete-time dynamical TC systems. We investigate two
maps that are subjected to the action of periodic input
noise. Such systems are easy to simulate numerically@9,19–
22# and in many cases they retain essential features of S
continuous-time stochastic systems. A detailed study of
in bistable maps and in coupled map lattices was perform
in @21#, and then extended@22# to compare with a model o
spatiotemporal SR based on thef4 theory @23#. Chaotic
maps are basic models for the investigation of noise-free
in which the internal chaotic dynamics is used to optim
SNR without the use of external noise@9,10,15,16#. How-
ever, with an exception of some artificially constructed mo
els in @15,16#, all maps analyzed so far in the context of S
were discrete-time simplifications of a generic dynami
continuous-time system with conventional SR: a model of
overdamped particle in a bistable potential. In such a mo
additive periodic forcing changes alternately therelative
depth of the potential wells, increasing the probability o
jumps between wells twice per modulation period, and
probability of occupation of every well once per period@2#.
As far as we know none of the previous studies of SR
maps~except of@15,16#! considered a TC system.

First the logistic map close to a bifurcation point from th
period-1 to the period-2 state is analyzed in the presenc
additive periodic forcing and noise. It is shown that in sy
tems which exhibit period doubling SR can be realized
choosing the noise intensity to maximize the periodicity
phase jumps which reverse the order of points on
period-2 orbit. This study is in line with other studies of S
in systems close to period-doubling bifurcation@24#, and it is
in a sense complementary to the studies of SR in other ro
to chaos, e.g., via intermittency@10#. Second we consider th
spin map which is a model for the dynamics of a damp
spin in the presence of anisotropy, driven by periodic pul
of magnetic field@25–29#. If the periodic and noisy compo
nents are added to the amplitude of the pulses, the n
intensity can be chosen in such a way that the jumps betw
5134 ©2000 The American Physical Society
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PRE 61 5135STOCHASTIC RESONANCE IN NOISY MAPS AS . . .
two equivalent spin orientations occur most probably wh
the periodic component is at a maximum. In both examp
investigations based on numerical simulations are comp
with predictions of simple adiabatic theories.

One needs to stress that although both our systems
sess two equivalent stable states their existence plays a
different role as compared to conventional bistable model
SR studied first in@1–3# and then in many other papers.
such bistable models the external periodic force in fact le
to the symmetry breakingbetween both states~e.g., energy
wells!, i.e., to temporary ‘‘energy’’ increase of one well an
energy decrease of the other well. It follows that there
time moments when the probability of the noise-induc
jump, e.g., from the left to the right well, is larger than th
of the reverse jump, and probabilities of occupations of b
wells vary periodically in time. However, in both system
studied in the present paper, the external periodic forcedoes
not break the system symmetry~relative energies of both
states are the same!. This means that in an equivalen
bistable model just the height of the barrier between b
wells oscillates in time. As a result, at the same time m
ments one observes the increase of the jump probability f
the left to the right welland that of the reverse jump. I
follows that the probability of occupation of the wells is n
modulated and the conventional SR cannot be observe
our models. Similar models with continuous time were
vestigated in@30,31# and they can be described in a gene
framework of theory of SR in TC systems, where the on
manifestation of bistability is that the TC rate is that of su
mounting the potential barrier.

II. SYSTEMS UNDER STUDY

A. The logistic map

Let us consider the logistic map

xn115 f ~xn!5rxn~12xn! ~1!

with the control parameterr. For 1,r ,3 this map has one
stable fixed pointx* 5121/r which loses stability in a
period-doubling bifurcation atr 5r 153. Forr .3 a period-2
orbit consisting of pointsx(1),x* and x(2).x* occurs.
These points are stable fixed points of the mapf 2, i.e., x( i )

5 f 2(x( i )), i 51,2, whilex* is an unstable fixed point off 2

being a separatrix between the basins of attraction ofx(1),
x(2). We consider the logistic map withr .r 1, driven by
additive periodic forcing and noise

xn115rxn~12xn!1A0 cos~v0n!1Dh~n!, ~2!

whereh(n) is a zero-mean white Gaussian noise with va
ance one. Henceforth we assume that the modulation pe
2p/v0 is even. We take care thatxn does not leave the
interval (0;1) by aslight modification of the Gaussian dis
tribution so thath(n) cannot assume values larger than
given cutoff; however, since we deal withD!1 ~cf. Sec.
III A ! this modification is very small.

If the amplitudeA0 is below a certain threshold, then i
the absence of noise the time series ofxn from Eq. ~2! still
shows an overall pattern of the period-2 orbit, i.e.,xn is
alternately below and above the separatrixx* . The location
of points visited by the trajectory is periodically modulat
n
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with frequencyv0 @Fig. 1~a!#. We assume thatv0!1 and it
follows that for any givenn the points of the trajectory and
the separatrix are close to three fixed points of the sec
iteration of Eq.~2! with D50

x( i )~n!5 f ~ f „x( i )~n!…1A0 cosv0n!1A0 cosv0n, ~3!

where f denotes the map~1! and i 5*,1,2. In Fig. 1~a! the
location of the separatrixx* (n) calculated from Eq.~3! is
also shown. If only every second iteration of Eq.~2! is ob-
served the pointsxn perform periodic oscillations with fre-
quencyv0 always either abovex* or belowx* , depending
on the initial condition.

It can be seen from Fig. 1~a! that the points below and
abovex* (n) are both close to or far from the separatrix
the same moments, in phase with the cosv0n forcing. We are
interested in the perturbations of the overall period-2 patt
discussed above by the cooperative influence of the peri
forcing and noise. The periodic forcing is assumed to be
small to induce phase jumps in the overall period-2 patt
of xn , i.e., to cause that ifxn,x* (n) then also xn11
,x* (n11) or if xn.x* (n) then alsoxn11.x* (n11) @cf.
Fig. 1~a!#. However, withDÞ0 such phase jumps are po
sible: e.g., ifxn,x* (n) then after applying the deterministi
part of the map~2! the point will be above the separatri

FIG. 1. ~a! Fixed points of the second iteration of the logist
map with periodic forcing and without noise@Eq. ~2! with r 53.1,
A050.01, 2p/v05128#: stablex(1)(n), x(2)(n) @thick lines, from
the numerical simulation of Eq.~2!# and unstable separatrixx(* )(n)
@thin line, from Eq.~3!#; ~b! every second iteration of Eq.~2! with
D50.02 and other parameters as in~a!.
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5136 PRE 61S. MATYJAŚKIEWICZ, J. A. HOŁYST, AND A. KRAWIECKI
x* (n11), but the addition of Gaussian noise can shift
back below the separatrix. If only every second iteration
Eq. ~2! is observed, switching between small oscillations
xn below and above the separatrix can be seen@Fig. 1~b!#.
Assuming that after applying the deterministic part of Eq.~2!
to any xn,x* (n) the image of this point will be close to
x(2)(n11) and vice versa, it can be seen that maxim
probability of the occurrence of such phase jumps co
sponds to the maxima of the periodic component of Eq.~2!,
when both stable fixed points of Eq.~3! x(1)(n), x(2)(n) are
close to the separatrixx* (n). This happens once per perio
2p/v0. This situation resembles that in dynamical TC sy
tems, where the subthreshold periodic forcing modulates
probability of noise-induced jumps over a threshold. In o
case the functionf (xn) in Eq. ~2! represents the interna
period-2 deterministic dynamics, and the noise-induc
phase jumps are just shifts of the pointsxn below or above
the separatrix which plays a role of the threshold. Hence
occurrence of SR with varying noise intensityD can be ex-
pected if the output signal which reflects the occurrence
absence ofthe phase jump of the period-2 orbit~not the
jumps between the states below and above the separatr! at
every time stepn is analyzed.

In order to simplify the theoretical description of th
above-mentioned system~Sec. III B! we also modified it as
follows. First, forD50 and givenA0 andv0 the location of
points visited by the trajectory as in Fig. 1~a! is found from
the numerical simulation of Eq.~2! and stored. Thus we hav
two series of points,x̃(1)(n),x* (n) and x̃(2)(n).x* (n),
both of which are periodic. The points visited are not nec
sarily equal tox(1,2) from Eq. ~3!, in particular for highv0.
Then, in the course of simulation of Eq.~2! with DÞ0,
x̃(1)(n) or x̃(2)(n) is set as the initial condition for the itera
tion n11, if after the iterationn we havexn,x* (n) or xn

.x* (n), respectively@since x̃(1,2)(n) are periodic,n on the
rhs of these equations can be taken as mod 2p/v0#. We call
this system the logistic map with reset. In this case
mechanism of noise-induced phase jumps is the same as
cussed previously and SR can also be expected if the ou
signal reflects the occurrence or absence of the phase jum
the period-2 orbit at timen.

B. The model of dynamics of a kicked damped spin

In Refs.@25–29# a classical spinS, uSu5S in the uniaxial
anisotropy field with transverse magnetic fieldB̃(t) added
along thex axis was studied. The system is described by
Hamiltonian

H52A~Sz!
22B̃~ t !Sx , ~4!

whereA is the anisotropy constant. This classical mode
related to experimentally investigated quantum magn
systems if one considers the properties of isolated spin
large magnetic molecules such as Mn12O12(CH3COO)16,
where the anisotropy is induced by molecule symmetry@32#
or the nanometric-size single-domain ferromagnetic partic
~superparamagnets! used for the observation of the macr
scopic quantum tunneling phenomenon@33#. The motion of
the spin is determined by the Landau-Lifschitz equation w
the damping term
t
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dt
5S3Be f f2

l

S
S3~S3Be f f!, ~5!

whereBe f f52dH/dS is the effective magnetic field andl
.0 is the damping parameter. Taking the transverse fiel
the form of periodicd pulses with the amplitudeB and the
periodt

B̃~ t !5B(
n51

`

d~ t2nt! ~6!

and profiting from the fact thatS is constant, Eq.~5! can be
transformed into a superposition of two two-dimension
~2D! mapsTA andTB . The mapTA describes the time evo
lution between kicks

TAF w

Sz
G5Fw1Dw

WSz
G , ~7!

wherew is the angle between thex axis and the projection o
the spin on thex,y plane and

W5@c21~Sz /S!2~12c2!#21/2,

c5exp~22lASt!,

Dw5~1/l!ln$~11S/Sz!@11S/~WSz!#%22ASt.

The mapTB written in the variables (Sx ,F), whereF is
the angle between they axis and the projection of the spin o
the x,z plane has a form

TBF F

Sx
G5F F2B

S22S~S2Sx!D
2UG , ~8!

whereD5exp(2lB) and U5@S1Sx1D2(S2Sx)#21. The
complete dynamics is a superposition of the two maps

Sn115TB†TA@Sn#‡. ~9!

We takeB as the control parameter. ForS51, t52p,
l50.105 494 2,A51, andB,Bc51 two symmetric attrac-
tors of Eq.~9! exist @25,26#. These attractors correspond
two Ising states~spin ‘‘up’’ and ‘‘down’’ ! existing in the
absence of the external field, and in general they can be fi
points, periodic orbits or chaotic attractors, depending onB
@Fig. 2~a!#. For B.Bc two symmetric strange attractors
which exist in the system whenB is slightly below Bc ,
merge as a result of a crisis@27–29,34# @Fig. 2~a!#. We in-
vestigated Eq.~9! with the time-dependent control paramet

B~n!5B01B1cos~v0n!1Dh~n! ~10!

with B01B1,Bc . The values ofB0 andB1 were chosen so
that for B5const andB02B1,B,B01B1 the attractors of
Eq. ~9! are two stable fixed points. ForD50 the simulation
of Eq. ~9! with B5B(n) given by Eq.~10! reveals that the
spin is always up,Sz.0, or down, Sz,0, depending on
initial conditions. In the presence of noise these two attr
tors merge into one due to the occurrence of the no
induced attractor merging crisis@Fig. 2~b!# @35,36#. Neglect-
ing possible transients one can say that switching betw
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the two parts of the attractor can take place when in Eq.~10!
B.Bc . Jumps between the two parts of the attractor
most probable when the periodic forcing is at a maximu
once per period 2p/v0. Hence SR will occur for the opti-
mum value ofD if the signal analyzed reflects the occurren
or absence of the jump~see Sec. III B for details!. The dif-
ference with the logistic map is that here the periodic forc
and noise are multiplicative and their effect is dynamic
they modify the control parameter, and, what follows, t
internal system dynamics, instead of shifting the points
rectly below or above the separatrix. The complicated in
nal dynamics of the map~9! causes that the jumps need n
necessarily occur always whenB(n).Bc .

At this point the difference between our systems and
bistable 1D maps studied in@9,19–22# should be further em-
phasized. Both maps~2! and ~9! are bistable. In the logistic
map the two symmetric states are two period-2 orbits wit
reverse order of points on the orbit. In the spin map withB
,Bc two symmetric disjoint attractors exist. When SR
studied in generic bistable systems, the model of the par
in the potential with two symmetric wells, left and right,
usually applicable. The additive periodic force modulates
relative depth of the potential wells in such a way that dur
half a period, e.g., the left well is deeper, and during the n
half—the right one@2#. Thus the probabilities~or rates! of
transitions from the wells are also modulated, and there
phase shift, equal to half of the modulation period, betwe
the probabilities of transitions from the left and right we

FIG. 2. ~a! Bifurcation diagramSz vs B for the spin map~9!
with t52p, l50.105 494 2,A51; ~b! time series ofSz,n from Eq.
~9! with B050.5, B150.1, D50.55, 2p/v05128, and other pa-
rameters as in~a!.
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Also the probabilities of occupation of the two wells a
modulated with the same relative phase shift. SR at
quencyf 05v0 /2p is observed if a signal reflecting theac-
tual positionof the particle in the left or right well is ana
lyzed.

In this paper, in both systems under study, the perio
force modulates the transition probabilities from the tw
above-mentioned statessymmetrically, without the relative
phase shift, and thus the probability of occupation of any
these statesis not modulated. However, the probability o
jumps between the two states is modulated with per
2p/v0. SR at frequencyf 05v0/2p can thus be expected i
the signal reflecting the presence or absence ofthe jump
between the system statesat a given moment is analyzed. A
pointed out in Sec. I, this is a typical situation in the mod
of the particle in the bistable potential with modulated barr
height. In our models the internal dynamics within the tw
states is also taken into account. Thus the bistability of
systems plays a quite different role as compared to conv
tional observations of SR@2# and the models under stud
bear a certain resemblance todynamical TC systems.

III. STOCHASTIC RESONANCE

A. Numerical results and discussion

In this section we present the numerical results for S
vs D obtained in the systems discussed in Sec. II. In all ca
we analyzed a two-state signal:yn51 if at time stepn the
phase jump in Eq.~2! or the jump between symmetric par
of the attractor in Eq.~9! occurred andyn50 otherwise. The
phase jump at time stepn in the logistic map model occurs i
xn is below ~above! the separatrixx* (n), thoughxn21 was
also below~above! the separatrix, respectively. The locatio
of the separatrix for everyn is evaluated from Eq.~3!. We
assume that the jump between symmetric parts of the att
tor in the spin map model occurs whenSz,n andSz,n21 have
opposite signs. ThusSz50 is assumed as a separatrix b
tween the attractors. This is not strict since the structure
the basin boundaries of chaotic attractors in Eq.~9! is very
complicated@27–29#, but such an assumption is enough f
our purposes. In all cases the PSD was calculated f
32 678 points of the signalyn using fast Fourier transform
~FFT! with a square window, and SNR was evaluated
defined in Sec. I.

In Figs. 3~a! and 3~b! the results are summarized for th
logistic map ~2! without and with reset, respectively, wit
parametersr 53.1, A050.01, and various periods 2p/v0.
The curves of SNR vsD show clear maxima indicating th
occurrence of SR. In both cases the values of SNR incre
with decreasingv0 and the location of the maximum i
shifted towards smaller values ofD. Strong dependence o
SNR on the periodic forcing frequency indicates an imp
tant role of dynamical effects in this model, since in nond
namical SR~e.g., in nondynamical TC systems! SNR should
not vary with v0 @13#. The SNR reaches maximum value
for v0→0, i.e., in the adiabatic limit. It was found that i
both cases this limit is obtained already for 2p/v0.128.

In the case of the logistic map with reset the SNR valu
are by order of magnitude greater than in the case with
reset. This is because even in the case of weak noise
system~2! without reset does not follow the periodic orbi
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FIG. 3. ~a! and~b! SNR vsD for the logistic map~2! with r 53.1, A050.01 without reset~a! and with reset~b!; numerical curves~solid
lines! from bottom to top are for 2p/v0516, 32, 64, 128. In~b! predictions of the adiabatic theory of Sec. III B~dashed line!, and SNR vs
B0 ~multiplied by 10! for the signalzn from the states of the second iteration of the logistic map~dotted line! are shown;~c! and ~d! PSD
vs f for the logistic map with reset for the signalyn from the jumps~c!, and for the signalzn from the states of the second iteration of th
map ~d!.
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x̃(1,2)(n) of Eq. ~2! without noise@cf. Fig. 1~b!#. The points
xn are thus not necessarily close to the separatrixx* (n)
when the periodic forcing is at a maximum, and far from t
separatrix when the periodic forcing is at a minimum, so
effect of periodic forcing is smaller. On the other hand,
this case the jumps can be also caused by applying s
noise several times, while in the map with reset the noise
to be strong enough to force the phase jumps within one s
This effect does not compensate the decrease of SNR
shifts the maximum of SNR towards smaller values ofD. In
the case of a logistic map with reset the maximum is
Dmax'0.07. This result can be expected since for the app
amplitude of the periodic forceA0 the minimum distance
between the pointsx̃(1,2)(n) and the separatrix is of the orde
of 0.07, and maximum 0.14@Fig. 1~a!#, so forD'Dmax there
will be most probably only a few phase jumps when th
distance is minimum. This is an example of the coopera
effect of periodic forcing and noise, typical of SR.

In Fig. 4 SNR vsD is shown in the case of spin map~9!
for B050.5, B150.1, and other parameters as in Sec. II
Here the distanceBc2B02B150.4 is quite large and stron
noise withD5Dmax'0.5 is needed in order to obtain max
mum SR, but the effect is clearly visible. The order of ma
nitude of Dmax is again such that SR can be treated a
cooperative phenomenon resulting from periodic forcing a
noise. One can hardly observe any dependence of SNR
the periodic forcing frequency for a wide range of 2p/v0,
e

all
as
p.
ut

r
d

e

.

-
a
d
on

probably due to a large value ofB1.
In order to compare our results with the more famili

case of conventional SR in bistable systems, in Fig. 3~b! and
Fig. 4 we also show SNR vs noise intensityD for the signal
zn extracted from the states rather than from jumps betw
the two symmetric states of the maps under study. This

FIG. 4. SNR vs D for the spin map~9! with t52p, l
50.105 494 2,A51, B050.5, B150.1; numerical curves~solid
lines! for 2p/v058, 16, 128, 512 are shown~dependence of SNR
on v0 is almost absent!; the dashed curve is the result of the ad
batic theory of Sec. III B; the dotted line is SNR for the signalzn

from the states of the spin map~multiplied by 10!.
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nal was obtained in the following way. In the case of t
logistic map with reset every second iteration was samp
and the following signal was analyzed:zn51 if xn.x* (n)
and zn521 if xn,x* (n). In the case of the spin map th
signal zn was defined aszn51 if Sz,n.0 and zn521 if
Sz,n,0. This is a typical signal analyzed in the case of t
conventional SR in bistable systems. In both cases the
tained in such a way values of SNR are by at least one o
of magnitude smaller than in the case of SNR evaluated f
the signalyn @let us note that in Fig. 3~b! and Fig. 4 the
original values of SNR are multiplied by 10# and no clear
maximum of SNR can be seen. Moreover, in the case of
logistic map with reset we also show plots of the PSD vf
for the signalyn @Fig. 3~c!, the peak at the input signal fre
quency is clearly seen# andzn @Fig. 3~d!, only a noisy back-
ground is present in the vicinity of the input signal fr
quency#. These results confirm that in our systems t
conventional SR effect is absent in contrast with the SR
fect observed when the systems are treated as TC syste

B. Comparison with simple adiabatic theory

In this section we compare our numerical results w
predictions of a simple adiabatic theory valid forv0!1. As
pointed out in Sec. II the systems under study bear cer
resemblance to TC systems. The occurrence of a jum
reflected by a peak exactly one time step long in the ou
signal yn . In such systems if the probability of the occu
rence of the peakp(n)5Pr(yn51) is a known periodic
function of time with period 2p/v0, the SNR may be evalu
ated as@37,38#

SNR5NMuP1u2/~ p̄2 p̄2!, ~11!

where N52p/v0 , M is the number of periods within th
measured time interval~thus MN532 678 is the length of
the interval from which the data were stored!, P1 is the first
Fourier coefficient of p(n) evaluated as P1

5(1/N)( j 50
N21p( j )exp(2iv0j), and the bar denotes the tim

average. Equation~11! is particularly useful in the case o
discrete-time systems@37,38#; the value of SNR in Eq.~11!
is evaluated for a bandwidthD f 51/NM52215 Hz which
enables a direct comparison with the SNR obtained num
cally in Sec. III A.

In the case of a logistic map with resetp(n) can be evalu-
ated as follows. Assuming that the deterministic part of E
~2! maps the pointx(1)(n21) into x(2)(n) and vice versa
@where x(1)(n21), x(2)(n) are given by Eq.~3!# we can
write the conditional probabilities that at time stepn the
phase jump occurred provided thatxn215x( i )(n21), i
51,2, as

Pr@yn51uxn215x(1)~n21!#

5
1

A2pD
E

2`

x* (n)
expH 2

@j2x(2)~n!#2

2D2 J dj,

Pr@yn51uxn215x(2)~n21!#

5
1

A2pD
E

x* (n)

`

expH 2
@j2x(1)~n!#2

2D2 J dj.

~12!
d,

e
b-
er
m

e

e
f-
s.

in
is

ut

ri-

.

Denoting by Pr@xn5x( i )(n)# the probability of occupation of
x( i )(n) at time stepn, the total probability of the jump a
time n is

p~n!5Pr~yn51!

5Pr@yn51uxn215x(1)~n21!#

3Pr@xn215x(1)~n21!#

1Pr@yn51uxn215x(2)~n21!#

3Pr@xn215x(2)~n21!#. ~13!

In the first approximation the probabilities of occupation
the stable fixed points in Eq.~13! can be assumed as 1/2
However, the location of the stable fixed points is not sy
metric with respect to the separatrix. Thus improved valu
of the probabilities can be evaluated from the Chapm
Kolmogorov equation for Pr@xn5x( i )(n)#, i 51,2. After
simple algebra we get

Pr@xn5x(1)~n!#

5Pr@yn51uxn215x(1)~n21!#Pr@xn5x(1)~n!#

1$12Pr@yn51uxn215x(2)~n21!#%

3Pr@xn5x(2)~n!#,

Pr@xn5x(1)~n!#1Pr@xn5x(2)~n!#51. ~14!

The above equations were obtained under the assump
that the probabilities of occupation of any fixed point at tim
stepsn21 andn are equal, which is true forv0!1, and only
the conditional probabilities of phase jumps vary withn.

Using Eqs.~12!–~14! we evaluatedp(n) and calculated
SNR from Eq.~11!. The results are shown in Fig. 3~b!. The
theoretical curve lies above the numerical one, in particu
for high noise intensities. This discrepancy can be attribu
to the above-mentioned asymmetry of pointsx(1)(n) and
x(2)(n) with respect to the separatrixx* (n). Equation~11! is
exact innondynamicalTC systems, in which the periodic, o
deterministic, and stochastic components of the system
be separated@37#. In the logistic map with reset the dete
ministic component is a superposition of the overall period
pattern and the effect of additive periodic forcing. Let
assume that atn50 we havex05x(1)(0). Then, depending
on the number of phase jumps within one period, atn5N
52p/v0, after reset, we can havexN5x(1)(0), but alsoxN
5x(2)(0). Probabilities of the phase jump in the iterationN
11 are different in these two cases. Thus the addition
random white noise in Eq.~2! introduces also a certain de
gree of randomness into the deterministic part of the dyna
ics of the logistic map with reset, and the deterministic a
stochastic components cannot be separated. In our theory
effect is lost sincep(n) is obtained from Eq.~13! by aver-
aging the conditional probabilities of the phase jump Pr@yn
51uxn215x(1)(n21)# and Pr@yn51uxn215x(2)(n21)#,
but it can lead to the decrease of SNR.

In the case of the spin map~9! a quantitative theory can
be based on the expression for the mean timet between
jumps between two symmetric parts of the attractor ab
the attractor merging crisis@34#. For the parameters used i
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this paper it was found that for constantB this time scales as
t5a(B2Bc)

2g with a'2.0 andg'0.77 @27–29#, and the
probability of the jump is 1/t. In the case of noise-free SR
adiabatic theories based on such scaling were used
@15,16,20#. In the presence of the periodic forcing and no
in Eq. ~10! the probability of the jump can be evaluated
the average

p~n!5Pr~yn51!

5
1

A2paD
E

Bc2B02B1cosv0n

`

~B01B1cosv0n1j2Bc!
g

3expS 2
j2

2D2D dj ~15!

and SNR can be again evaluated from Eq.~11!. Comparison
of the theoretical prediction with numerical results~Fig. 4!
shows that in this case the agreement is much worse tha
the case of the logistic map. First, this can be caused by
fact that Eq.~11!, derived for nondynamical systems, n
glects any complicated internal system dynamics. Seco
one should remember that the scaling relation fort on which
Eq. ~15! is based is valid only forB very close toBc , and in
the present case the noise component is so strong tha
values ofB in Eq. ~10! can much exceedBc . Third, Eq.~15!
is only approximate and it is not necessarily true that
probability of the jump in the presence of noise can be
tained by averaging the probabilities in the absence of n
@36#.

It should be noted that in both cases of Fig. 3~b! and Fig.
4 the location of maxima of the curves SNR vsD agrees
quite well with the numerical results. Hence the simple ad
batic theories discussed here can be used at least to fi
noise intensity for the maximum SR efficiency.

IV. SUMMARY AND CONCLUSIONS

In this paper we investigated SR in discrete-time dyna
cal systems: the logistic map and the spin map with perio
forcing and noise. The systems under study model dynam
TC systems driven by the subthreshold periodic signal wh
is too weak to cause the system to cross the assumed th
old. In such systems, in the presence of noise the probab
of the occurrence of certain events like jumps or pulses
unit length, which indicate TC, is modulated periodically
that it reaches its maximum value once per period. If
noise strength is chosen properly, the maximum value
SNR in the time series reflecting the occurrence of TC eve
is expected. In this paper both systems under study
bistable, since they possess two distinct symmetric st
~phase-shifted period-2 orbits or disjoint attractors before
sis!, but this bistability plays a quite different role as com
pared to conventional SR. The important fact is that jum
between these two symmetric states can be modeled a
events. It follows that the presence or absence of SR in
tems studied in our paper depends not just on the syst
considered but on the kind of observed signal as well.
both systems SR was a dynamical effect. This is indicated
the dependence of SNR onv0. This distinguishes our model
from the case of nondynamical SR in TC systems@13# which
in
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can also easily be described in terms of discrete-time syst
@37,38#.

The logistic map~2! with the parameters used in this p
per is a discrete-time model of systems close to the per
doubling bifurcation, moving on the period-2 orbit mod
lated by periodic forcing. In this model we showed th
possibility to obtain SR using additive noise which induc
phase jumps in the overall period-2 pattern. The SNR at
periodic forcing frequency from the signal indicating the o
currence of phase jumps can be maximized by the optim
choice of the noise strength. Two cases were discussed
the first case the initial condition for then11 step was just
the value ofxn resulting from Eq.~2!, and in the second one
called the logistic map with reset, the initial condition for th
n11 step was chosen always on the periodically modula
period-2 orbit of the noise-free system. One should reme
ber that discrete-time maps are usually models resulting f
stroboscopic sampling of continuous-time systems dynam
Thus the model with reset can be interpreted as a discr
time model of continuous-time systems driven by pulses
external noise, which evolve freely between consecut
pulses. If in such systems the period-2 orbit is strongly
tracting and if the pulses are applied only at certain mome
of time, e.g., when crossing a Poincare´ plane, then just be-
fore the pulse the system will already be on the orbit res
ing from the deterministic dynamics. The occurrence
the phase jump means then the shift occurs in the e
period-2 sequence of these crossings. The map without r
can in turn be interpreted as a model of continuous-ti
systems driven by incessant noise. In this case the locatio
points on the Poincare´ section will always be somewhat ran
dom, and the occurrence of the phase jump means only
perturbation of the overall period-2 pattern, as discusse
Sec. II A. This greater degree of randomness leads to
decrease of the effect of periodic forcing on the system
namics, as discussed in Sec. III A, and to the decreas
SNR, although the maximum of SNR occurs for smal
noise strength.

The spin map investigated in this paper forms a discre
time model of SR in dynamical systems with an attrac
merging and multiplicative periodic forcing and noise. W
chose the parameters so that forB02B1,B,B01B1 in Eq.
~10! the two symmetric attractors are stable fixed points a
there is no possibility of jumps between them. The jum
appear only in the presence of noise, due to the occurrenc
the noise-induced attractor merging crisis. Neglecting
possible chaotic dynamics forB slightly belowBc , the sys-
tem under study is a model of a symmetric bistable sys
with the barrier height modulated by periodic forcing a
noise.

The examples considered in this paper represent an ex
sion of the idea of using simple discrete-time systems
model SR in more complicated continuous-time systems
the case of TC systems. It is shown that this kind of SR c
be realized in systems close to bifurcation points or cris
The maps considered here have many properties generi
chaotic systems. Hence our maps can model many othe
perimental chaotic systems with period doubling and cri
in which SR can be observed.
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