PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Stochastic resonance in noisy maps as dynamical threshold-crossing systems
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Interplay of noise and periodic modulation of system parameters for the logistic map in the region after the
first bifurcation and for the kicked spin model with Ising anisotropy and damping is considered. For both maps
two distinct symmetric states are present that correspond to different phases of the period-2 orbit of the logistic
map and to disjoint attractors of the spin map. The periodic force modulates the transition probabilities from
any state to the opposite one symmetrically. It follows that the maps behave as threshold-crossing systems with
internal dynamics, and stochastic resonafmaximum of the signal-to-noise ratio in the signal reflecting the
occurrence of jumps between the symmetric sjatedoth models is observed. Numerical simulations agree
qualitatively with analytic results based on the adiabatic theory.

PACS numbdps): 05.45—a, 05.40-a

I. INTRODUCTION clude both monostable and bistable models; in the latter case
they can exhibit SR even if the conventional SR cannot be
Stochastic resonand&R) is a nonlinear phenomenon in observed.
which the transmission of a coherent signal by certain sys- [N the present paper we demonstrate that SR is possible in
tems can be improved by the addition of noise to the systerfliscrete-time dynamical TC systemi#/e investigate two
[1]. The essence of the phenomenon is that even a wedRaPS that are subjected to the action of periodic input and

periodic signal which can be undetectable in the absence d}2iSe- Such systems are easy to simulate numerigap—
noise can be detected in the presence of optimum noise, e. 2] and in many cases they retain essential features of SR in

in a bistable system one can observe a strong periodic co ontinuous-time stochastic systems. A detailed study of SR
' - in bistable maps and in coupled map lattices was performed

'ﬁj'?lgin:hlg ;Tjetpﬂiogg\?\?erofss\g;ﬁmg dZits\{N;gBt\g?f)Stﬁs in [21], and then extendel®2] to compare with a model of

consist of peaks located at the multiples of the periodic Sigspaﬂotemporal SR based on thf theory [23]. Chaotic

: . maps are basic models for the investigation of noise-free SR
nal frequencyfo, superimposed on the noise backgroundi \yhich the internal chaotic dynamics is used to optimize
Sn(f). As a measure of SR the signal-to-noise r&8dIR is  gNR without the use of external noi§e,10,15,16. How-

often used, defined as SNFSp(fo)/Sy(fo), whereSp(fo)  ever, with an exception of some artificially constructed mod-
=S(fo) —Su(fo) is the first peak height. SR was observedels in[15,16, all maps analyzed so far in the context of SR
experimentally and predicted theoretically in a large varietywere discrete-time simplifications of a generic dynamical
of systems, including optical systerf34], sensory neurons continuous-time system with conventional SR: a model of an
[5,6], signal transmission in ion channdlg], chaotic sys- overdamped particle in a bistable potential. In such a model,
tems[8-10], electronic circuitd11], etc., to list only a few additive periodic forcing changes alternately thalative
(for recent review see Ref12]). depth of the potential wells, increasing the probability of
Although first observations of SR were obtained for dy-jumps between wells twice per modulation period, and the
namical systems with bistable potentidl$—3], recently  probability of occupation of every well once per peri@.
there has been a growing interest in the investigation of SR\s far as we know none of the previous studies of SR in
in dynamical and nondynamical threshold-cros€ifig) sys- maps(except of[15,16]) considered a TC system.
tems[5,6,13-18. TC systems are often referred to as excit-  First the logistic map close to a bifurcation point from the
able system§5,6] because their outputs consist of pulses thaperiod-1 to the period-2 state is analyzed in the presence of
can be emitted each time the noisy input crosses somadditive periodic forcing and noise. It is shown that in sys-
threshold. The important feature of SR in TC systems is aems which exhibit period doubling SR can be realized by
different kind of signals that are observed as compared tehoosing the noise intensity to maximize the periodicity of
“conventional” SR in bistable systems. In fact, noise in TC phase jumps which reverse the order of points on the
systems is optimized to increase the periodicity of suclperiod-2 orbit. This study is in line with other studies of SR
events as pulses or jumpgtweeraccessible states once per in systems close to period-doubling bifurcati@4], and it is
period of the periodic part of the input but not the periodicity in a sense complementary to the studies of SR in other routes
of occupationof such states. It follows that TC systems in- to chaos, e.g., via intermitten¢g0]. Second we consider the
spin map which is a model for the dynamics of a damped
spin in the presence of anisotropy, driven by periodic pulses

*Electronic address: matyjas@if.pw.edu.pl of magnetic field25—-29. If the periodic and noisy compo-
"Electronic address: jholyst@if.pw.edu.pl nents are added to the amplitude of the pulses, the noise
*Electronic address: akraw@if.pw.edu.pl intensity can be chosen in such a way that the jumps between
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two equivalent spin orientations occur most probably when 0.8 T T T T T
the periodic component is at a maximum. In both examples \/\/\/\/\/\/\/‘{ﬂ}/
investigations based on numerical simulations are comparec 0.75 [~ -]
with predictions of simple adiabatic theories.

One needs to stress that although both our systems pos 07 P
sess two equivalent stable states their existence plays a quit 0.65 _\/\/VV\M/\'/_
different role as compared to conventional bistable models of 3 ™
SR studied first if1-3] and then in many other papers. In 06 _
such bistable models the external periodic force in fact leads '
to the symmetry breakingetween both state®.g., energy 0.55 /\/\/\/\/\/\/\/\
wells), i.e., to temporary “energy” increase of one well and
energy decrease of the other well. It follows that there are 0.5 l l l l l
time moments when the probability of the noise-induced 0 200 400 600 800 1000
jump, e.g., from the left to the right well, is larger than that n
of the reverse jump, and probabilities of occupations of both
wells vary periodically in time. However, in both systems 0.85
studied in the present paper, the external periodic fdoms 0.8
not break the system symmetnglative energies of both 0.75
states are the sameThis means that in an equivalent 0.7
bistable model just the height of the barrier between both —
wells oscillates in time. As a result, at the same time mo- & 0.65
ments one observes the increase of the jump probability from> 0.6
the left to the right welland that of the reverse jump. It 0.55
follows that the probability of occupation of the wells is not 0.5
modulated and the conventional SR cannot be observed ir
our models. Similar models with continuous time were in- 0.45
vestigated if 30,31 and they can be described in a general 0.4 . . . . .
framework of theory of SR in TC systems, where the only 0 200 400 on 600 800 1000

manifestation of bistability is that the TC rate is that of sur-

mounting the potential barrier. FIG. 1. (a) Fixed points of the second iteration of the logistic

map with periodic forcing and without noig&q. (2) with r=3.1,
Ap=0.01, 27/ wy=128]: stablex¥(n), x®)(n) [thick lines, from
the numerical simulation of EG2)] and unstable separatri&*)(n)
[thin line, from Eq.(3)]; (b) every second iteration of E42) with
D=0.02 and other parameters as(a.

II. SYSTEMS UNDER STUDY
A. The logistic map
Let us consider the logistic map

Xn+1=F(Xp) =rXn(1—Xp)

D

with the control parametar. For 1<r <3 this map has one
stable fixed pointx* =1—1/r which loses stability in a
period-doubling bifurcation at=r,=3. Forr >3 a period-2
orbit consisting of pointsx®M<x* and x®?>>x* occurs.
These points are stable fixed points of the niidpi.e., x{")
=f2(xM), i=1,2, whilex* is an unstable fixed point df
being a separatrix between the basins of attraction(bf
x?). We consider the logistic map with>r,, driven by
additive periodic forcing and noise

with frequencyw, [Fig. 1(@)]. We assume thaby<1 and it
follows that for any givem the points of the trajectory and
the separatrix are close to three fixed points of the second
iteration of Eq.(2) with D=0

xD(n)=f(f(x(n))+ Ay coswon) + Ag coswon,  (3)
wheref denotes the magl) andi=*,1,2. In Fig. 1a) the
location of the separatrix* (n) calculated from Eq(3) is
also shown. If only every second iteration of E8g) is ob-
served the pointg,, perform periodic oscillations with fre-
2) guencyw, always either abova* or belowx*, depending

on the initial condition.

where n(n) is a zero-mean white Gaussian noise with vari- It can be seen from Fig.(4) that the points below and
ance one. Henceforth we assume that the modulation pericgbovex* (n) are both close to or far from the separatrix at
27l wq is even. We take care that, does not leave the the same moments, in phase with the egsforcing. We are
interval (0;1) by aslight modification of the Gaussian dis- interested in the perturbations of the overall period-2 pattern
tribution so thatn(n) cannot assume values larger than adiscussed above by the cooperative influence of the periodic

Xn+1= MXp(1=Xp) +Ag cOg won) +D 7(n),

given cutoff, however, since we deal with<1 (cf. Sec.
[1l A) this modification is very small.

If the amplitudeA, is below a certain threshold, then in
the absence of noise the time seriexgffrom Eq. (2) still
shows an overall pattern of the period-2 orbit, i.e,, is
alternately below and above the separaiix The location
of points visited by the trajectory is periodically modulated

forcing and noise. The periodic forcing is assumed to be too
small to induce phase jumps in the overall period-2 pattern
of x,, i.e., to cause that ix,<x*(n) then alsox,,
<x*(n+1) orif x,>x*(n) then alsox,, ;>x*(n+1) [cf.

Fig. 1(@]. However, withD+ 0 such phase jumps are pos-
sible: e.g., ifx,<x*(n) then after applying the deterministic
part of the map(2) the point will be above the separatrix
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x*(n+1), but the addition of Gaussian noise can shift it

back below the separatrix. If only every second iteration of qi - SXBerr™ gSX(SXBery), 5

Eq. (2) is observed, switching between small oscillations of

X, below and above the separatrix can be sg€g. 1b)].  whereB,=—dH/dS is the effective magnetic field and
Assuming that after applying the deterministic part of B). >0 is the damping parameter. Taking the transverse field in

to_any x,<x*(n) the image of this point will be close to the form of periodics pulses with the amplitud® and the
x®®(n+1) and vice versa, it can be seen that maximuMperiod 7

probability of the occurrence of such phase jumps corre-

sponds to the maxima of the periodic component of ). ~ i

when both stable fixed points of E€) x*)(n), x?)(n) are B(t)= BZ o(t—nr) (6)
close to the separatrix* (n). This happens once per period =t

27l wg. This situation resembles t.hat. in dy_namical TC sys-and profiting from the fact tha® is constant, Eq(5) can be
tems, where the subthreshold periodic forcing modulates thgnsformed into a superposition of two two-dimensional

probability of noise-induced jumps over a threshold. In OUr(2p) mapsT, and Tg. The mapT, describes the time evo-
case the functiorf(x,) in Eq. (2) represents the internal | tion between kicks

period-2 deterministic dynamics, and the noise-induced
phase jumps are just shifts of the poimtsbelow or above © o+ A
the separatrix which plays a role of the threshold. Hence the Ta s, = WS,
occurrence of SR with varying noise intensibycan be ex-

pected if the output signal which reflects the occurrence Ofyherey is the angle between theaxis and the projection of
absence othe phase jump of the period-2 orbihot the  hq spin on thes,y plane and

jumps between the states below and above the separatrix

: ()

every time stem is analyzed. W=[c?+(S,/S9)%(1—-c?)] 12
In order to simplify the theoretical description of the
above-mentioned syste(®ec. Il B) we also modified it as c=exp(—2\ASr7),
follows. First, forD=0 and givernA, andw, the location of
points visited by the trajectory as in Fig(al is found from Ap=(IN)In{(1+S/S,)[1+SI(WS,)]} —2ASr.

the numerical simulation of Eq42) and stored. Thus we have
two series of pointsx®(n)<x*(n) and x@(n)>x*(n),
both of which are periodic. The points visited are not neces
sarily equal tox*? from Eq.(3), in particular for highwg.
Then, in the course of simulation of E) with D+#0, P
xM(n) or x?(n) is set as the initial condition for the itera- T
tion n+1, if after the iteratiom we havex,<x*(n) or x, S

>x*(n), respectively{sincex(*?(n) are periodich on the  \where D =exp(—AB) and U=[S+S,+D*S-S)]" L. The
rhs of these equations can be taken as metl . We call  complete dynamics is a superposition of the two maps
this system the logistic map with reset. In this case the

mechanism of noise-induced phase jumps is the same as dis- Shi1=TalTAl S]] 9
cussed previously and SR can also be expected if the output

signal reflects the occurrence or absence of the phase jump of We takeB as the control parameter. F&=1, 7=2m,

The mapTg written in the variables$, ,®), where® is
the angle between theaxis and the projection of the spin on
the x,z plane has a form

d-B
S—-2S8(S-S,)b?U|’

®

the period-2 orbit at timen. N=0.1054942 A=1, andB<B.=1 two symmetric attrac-
tors of Eq.(9) exist[25,26. These attractors correspond to
B. The model of dynamics of a kicked damped spin two Ising stateg(spin “up” and “down”) existing in the

) . ] o absence of the external field, and in general they can be fixed
In Refs.[25-29 a classical spir, [S|=Sin the uniaxial  points, periodic orbits or chaotic attractors, dependingon
anisotropy field with transverse magnetic fidqt) added [Fig. 2(@)]. For B>B, two symmetric strange attractors,
along thex axis was studied. The system is described by thavhich exist in the system wheB is slightly below B,
Hamiltonian merge as a result of a crisi27-29,34 [Fig. 2@)]. We in-
- vestigated Eq(9) with the time-dependent control parameter
H=—A(S)*-B(1)S,, 4

whereA is the anisotropy constant. This classical model is

related to experimentally investigated quantum magnetigvith Bo+B;<B.. The values 0B, andB; were chosen so
systems if one considers the properties of isolated spins dhat for B=const andB,—B;<B<By+ B; the attractors of
large magnetic molecules such as MDy,(CH;COO),g, Eqg. (9) are two stable fixed points. F&=0 the simulation
where the anisotropy is induced by molecule symmg3g| of Eq. (9) with B=B(n) given by Eq.(10) reveals that the

or the nanometric-size single-domain ferromagnetic particlespin is always upS,>0, or down, S,<0, depending on
(superparamagnetsised for the observation of the macro- initial conditions. In the presence of noise these two attrac-
scopic quantum tunneling phenomer&3]. The motion of tors merge into one due to the occurrence of the noise-
the spin is determined by the Landau-Lifschitz equation withinduced attractor merging crisigig. 2(b)] [35,36. Neglect-

the damping term ing possible transients one can say that switching between

B(n)=By+B;coq wgh)+D 7(n) (10
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Also the probabilities of occupation of the two wells are
modulated with the same relative phase shift. SR at fre-
quencyfy=wq /27 is observed if a signal reflecting ttee-
tual positionof the particle in the left or right well is ana-
lyzed.

In this paper, in both systems under study, the periodic
force modulates the transition probabilities from the two
above-mentioned statesymmetrically without the relative
phase shift, and thus the probability of occupation of any of
these statess not modulated. However, the probability of
jumps between the two states is modulated with period
27l wy. SR at frequency = wy/27 can thus be expected if
the signal reflecting the presence or absencehef jump
between the system statsa given moment is analyzed. As

1 kK | | | pointed out in Sec. I, this is a typical situation in the model
b of the particle in the bistable potential with modulated barrier
0.5 [ height. In our models the internal dynamics within the two

states is also taken into account. Thus the bistability of our

< systems plays a quite different role as compared to conven-
o3 0 tional observations of SIR2] and the models under study
bear a certain resemblancedgnamical TC systems

-0.5
IIl. STOCHASTIC RESONANCE
-1 A | ; o A. Numerical results and discussion
0 200 400 600 800 1000 In this section we present the numerical results for SNR

n vs D obtained in the systems discussed in Sec. Il. In all cases
we analyzed a two-state signgl,=1 if at time stepn the
phase jump in Eq(2) or the jump between symmetric parts
of the attractor in Eq(9) occurred andg/,,=0 otherwise. The
phase jump at time stapin the logistic map model occurs if
X, is below (above the separatrix* (n), thoughx,_,; was
also below(above the separatrix, respectively. The location
the two parts of the attractor can take place when in(E@.  of the separatrix for everp is evaluated from Eq(3). We
B>B.. Jumps between the two parts of the attractor areassume that the jump between symmetric parts of the attrac-
most probable when the periodic forcing is at a maximumjor in the spin map model occurs wh&n, andS, ,_; have
once per period 2/w,. Hence SR will occur for the opti- opposite signs. Thu§,=0 is assumed as a separatrix be-
mum value oD if the signal analyzed reflects the occurrencetween the attractors. This is not strict since the structure of
or absence of the jum(see Sec. Il B for detai)s The dif- the basin boundaries of chaotic attractors in ).is very
ference with the logistic map is that here the periodic forcingcomplicated 27-29, but such an assumption is enough for
and noise are multiplicative and their effect is dynamical:our purposes. In all cases the PSD was calculated from
they modify the control parameter, and, what follows, the32678 points of the signal, using fast Fourier transform
internal system dynamics, instead of shifting the points di{FFT) with a square window, and SNR was evaluated as
rectly below or above the separatrix. The complicated interdefined in Sec. I.
nal dynamics of the maf®) causes that the jumps need not  In Figs. 3a) and 3b) the results are summarized for the
necessarily occur always wh&{n)>B;. logistic map(2) without and with reset, respectively, with
At this point the difference between our systems and thg@arameters =3.1, A;=0.01, and various periods7d wg.
bistable 1D maps studied [8,19—-23 should be further em- The curves of SNR v® show clear maxima indicating the
phasized. Both map@) and (9) are bistable. In the logistic occurrence of SR. In both cases the values of SNR increase
map the two symmetric states are two period-2 orbits with avith decreasingw, and the location of the maximum is
reverse order of points on the orbit. In the spin map vidth shifted towards smaller values &f. Strong dependence of
<B. two symmetric disjoint attractors exist. When SR is SNR on the periodic forcing frequency indicates an impor-
studied in generic bistable systems, the model of the particlgant role of dynamical effects in this model, since in nondy-
in the potential with two symmetric wells, left and right, is namical SR(e.g., in nondynamical TC systeinfSNR should
usually applicable. The additive periodic force modulates thenot vary with wg [13]. The SNR reaches maximum values
relative depth of the potential wells in such a way that duringfor wq—0, i.e., in the adiabatic limit. It was found that in
half a period, e.g., the left well is deeper, and during the nexboth cases this limit is obtained already fofr/2v,>128.
half—the right ong[2]. Thus the probabilitiegor rates of In the case of the logistic map with reset the SNR values
transitions from the wells are also modulated, and there is are by order of magnitude greater than in the case without
phase shift, equal to half of the modulation period, betweenieset. This is because even in the case of weak noise the
the probabilities of transitions from the left and right well. system(2) without reset does not follow the periodic orbits

FIG. 2. (a) Bifurcation diagramS, vs B for the spin map(9)
with 7=27r, A=0.105 494 2 A=1; (b) time series of5, ,, from Eq.
(9) with B;=0.5, B;=0.1, D=0.55, 27/wy=128, and other pa-
rameters as irfa).
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FIG. 3. (a) and(b) SNR vsD for the logistic map2) with r=3.1, A;=0.01 without resefa) and with resetb); numerical curvegsolid
lines) from bottom to top are for 2/ wy= 16, 32, 64, 128. Irfb) predictions of the adiabatic theory of Sec. ll(Bashed ling and SNR vs
BO (multiplied by 10Q for the signalz, from the states of the second iteration of the logistic rtdqgited ling are shownjc) and(d) PSD
vs f for the logistic map with reset for the signgl from the jumps(c), and for the signat, from the states of the second iteration of the
map (d).

x12(n) of Eq. (2) without noise[cf. Fig. 1(b)]. The points  Probably due to a large value &.

X, are thus not necessarily close to the separattikn) In order to compare our results with the more familiar
when the periodic forcing is at a maximum, and far from thecase of conventional SR in bistable systems, in Fi) and
separatrix when the periodic forcing is at a minimum, so theFig. 4 we also show SNR vs noise intensityfor the signal
effect of periodic forcing is smaller. On the other hand, inZ» extracted from the states rather than from jumps between
this case the jumps can be also caused by app|y|ng Smén]e two Symmetric states of the maps under Study. This Sig'
noise several times, while in the map with reset the noise has

to be strong enough to force the phase jumps within one step. 60 1T 1T T T T T T 1
This effect does not compensate the decrease of SNR, but
shifts the maximum of SNR towards smaller value®ofin

the case of a logistic map with reset the maximum is for
Dmax=0.07. This result can be expected since for the applied
amplitude of the periodic forcé, the minimum distance

between the pointg(>2(n) and the separatrix is of the order
of 0.07, and maximum 0.14ig. 1(a)], so forD~D,.xthere
will be most probably only a few phase jumps when this
distance is minimum. This is an example of the cooperative
effect of periodic forcing and noise, typical of SR.

In Fig. 4 SNR vsD is shown in the case of spin m&®)
for Bo=0.5, B;=0.1, and other parameters as in Sec. Il B. 0 010203 040506070809 1
Here the distancB,—B,—B;=0.4 is quite large and strong D
noise withD =D ,,,,~0.5 is needed in order to obtain maxi-  FiG. 4. SNR vsD for the spin map(9) with 7=2m, A
mum SR, but the effect is clearly visible. The order of mag-=0.1054942,A=1, B,=0.5, B;=0.1; numerical curvessolid
nitude of D44 IS again such that SR can be treated as aines) for 2/ wy=8, 16, 128, 512 are showdependence of SNR
cooperative phenomenon resulting from periodic forcing antn w, is almost abseittthe dashed curve is the result of the adia-
noise. One can hardly observe any dependence of SNR dsatic theory of Sec. Ill B; the dotted line is SNR for the sigaal
the periodic forcing frequency for a wide range ofr/l2vy,  from the states of the spin mamultiplied by 10.
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nal was obtained in the following way. In the case of theDenoting by Pirx,=x((n)] the probability of occupation of
logistic map with reset every second iteration was sampledk()(n) at time stepn, the total probability of the jump at
and the following signal was analyzeg;=1 if x,>x*(n) time n is

andz,=—1 if x,<x*(n). In the case of the spin map the

signal z, was defined ag,=1 if S,,>0 andz,=—1 if p(n)=Pry,=1)

S,n<0. This is a typical signal analyzed in the case of the 1

conventional SR in bistable systems. In both cases the ob- =Pily,=1[xy-1=x"(n—-1)]

tained in such a way values of SNR are by at least one order XPx,_;=xP(n—1)]

of magnitude smaller than in the case of SNR evaluated from n-1

the signaly, [let us note that in Fig. ®) and Fig. 4 the +PIY,=1|X,_ 1 =x@(n—1)]

original values of SNR are multiplied by 1@nd no clear

maximum of SNR can be seen. Moreover, in the case of the XPi{xp_1=x@(n-1)]. (13

logistic map with reset we also show plots of the PSDf vs ) o o )
for the signaly, [Fig. 3(c), the peak at the input signal fre- In the first approximation the probabilities of occupation of

quency is clearly sedrandz, [Fig. 3(d), only a noisy back- the stable fixed po_ints in Eq13) can be ass_umgd as 1/2.
ground is present in the vicinity of the input signal fre- However, the location of the stable fixed points is not sym-

quency. These results confirm that in our systems themetric with respect to the separatrix. Thus improved values
conventional SR effect is absent in contrast with the SR efof the probabilities can be evaluated from the Chapman-

fect observed when the systems are treated as TC systemé&olmogorov equation for Pr,=x"(n)], i=1,2. After
simple algebra we get

B. Comparison with simple adiabatic theory P x _X(l)(n)]
n=

In this section we compare our numerical results with

predictions of a simple adiabatic theory valid fog<1. As =Py, =1|X-1=xB(n—1)]PIx,=x®(n)]

pointed out in Sec. Il the systems under study bear.certai'n H{1-Ply,=1|%,_1=x®(n—1)]}

resemblance to TC systems. The occurrence of a jump is

reflected by a peak exactly one time step long in the output X P x,=x®(n)],

signaly,. In such systems if the probability of the occur-

rence of the peakp(n)=Pr(y,=1) is a known periodic P x,=xP(n)]+Plx,=x?(n)]=1. (14

function of time with period 2r/ vy, the SNR may be evalu-

ated ag37,39 The above equations were obtained under the assumption

_ that the probabilities of occupation of any fixed point at time

SNR=NMIP4|?/(p—p?), (11)  stepsn—1 andn are equal, which is true fap,<1, and only

the conditional probabilities of phase jumps vary with

Using Egs.(12)—(14) we evaluatedp(n) and calculated
SNR from Eq.(11). The results are shown in Fig(i8. The
theoretical curve lies above the numerical one, in particular
for high noise intensities. This discrepancy can be attributed
to the above-mentioned asymmetry of poimd)(n) and
x®)(n) with respect to the separatnit (n). Equation(11) is

where N=27/wg, M is the number of periods within the
measured time intervathus MN=32678 is the length of
the interval from which the data were stoyeB, is the first
Fourier  coefficient of p(n) evaluated as P,
=(LN) = p(j)exp(—iwgi), and the bar denotes the time
average. Equatiofll) is particularly useful in the case of
discrete-time systen(S7,38; the value of SNR in Eq(11) exact innondynamicall C systems, in which the periodic, or

. . _ _ _15 .
IS evaluated_ for a bandywdthf_— INM=2 Hz which deterministic, and stochastic components of the system can
enables a direct comparison with the SNR obtained numerig separate@37]. In the logistic map with reset the deter-

cally in Sec. Il A. - . ministic component is a superposition of the overall period-2
In the case of a logistic map with resgn) can be evalu- e and the effect of additive periodic forcing. Let us
ated as follows. Assuming that the deterministic part of Edassume that at=0 we havex,=x(0). Then, depending
(2) maps the poink(n—1) into x®)(n) and vice versa on the number of phase jumps within one p’eriodnaiN
[where x®)(n—1), x{(n) are given by Eq(3)] we can  _,_ /. “oser recet. we can have,=x(0), butalsox
write the conditional probabilities that at time stepthe =x(2)(03’. Probabilities of the phase jump in the iteratiNNn

phase jump occurred provided that,_,=x"(n—1), i +1 are different in these two cases. Thus the addition of

=12, as random white noise in E(2) introduces also a certain de-
Ply,=1|x,_1=x"(n—1)] gree of randomness into the deterministic part of the dynam-
ics of the logistic map with reset, and the deterministic and
1 x* (n) [é—x®)(n)]? stochastic components cannot be separated. In our theory this
= J2nD j_x - T dé¢, effect is lost sincg(n) is obtained from Eq(13) by aver-
aging the conditional probabilities of the phase jumpyRr
Ply,=1/x,_1=x®(n—1)] = 1|?(n—1:X(l)(n_ 1)] and Pfy,=1|x,_,=x®(n—-1)],
but it can lead to the decrease of SNR.
1 (= [£—xB(n)]? g In the case of the spin ma) a quantitative theory can
V27D fx*(n)ex D2 3 be based on the expression for the mean timbetween

jumps between two symmetric parts of the attractor above
(12)  the attractor merging crisi34]. For the parameters used in
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this paper it was found that for constaithis time scales as can also easily be described in terms of discrete-time systems
7=a(B—B) " with a~2.0 andy~0.77[27-29, and the [37,38.

probability of the jump is I#. In the case of noise-free SR The logistic map2) with the parameters used in this pa-
adiabatic theories based on such scaling were used iper is a discrete-time model of systems close to the period-
[15,16,2Q. In the presence of the periodic forcing and noisedoubling bifurcation, moving on the period-2 orbit modu-
in Eg. (10) the probability of the jump can be evaluated as|ated by periodic forcing. In this model we showed the

the average possibility to obtain SR using additive noise which induces
phase jumps in the overall period-2 pattern. The SNR at the
p(n)=Prly,=1) periodic forcing frequency from the signal indicating the oc-
1 w currence of phase jumps can be maximized by the optimum
=—f (Bot+Bicoswon+&—B()” choice of the noise strength. Two cases were discussed: in
V2maD J8.-Bo-Bycosugn the first case the initial condition for the+ 1 step was just
2 the value ofx, resulting from Eq(2), and in the second one,
X exp( — _) & (15) called the logistic map with reset, the initial condition for the
D? n+1 step was chosen always on the periodically modulated

_ ) period-2 orbit of the noise-free system. One should remem-
and SNR can be again evaluated from Ed). Comparison  per that discrete-time maps are usually models resulting from
of the theoretical prediction with numerical resulSg. 4 syposcopic sampling of continuous-time systems dynamics.

tSFTOWS thatf i‘?h thlis qase the a?:r.eimtir.‘t is mléCh Worsea tkf;ar; Thus the model with reset can be interpreted as a discrete-
€ case of e fogistic map. FIrst, this can be caused by ht'?me model of continuous-time systems driven by pulses of
fact that Eq.(11), derived for nondynamical systems, ne-

. ) ; &xternal noise, which evolve freely between consecutive
glects any complicated internal system dynamics. Secon

one should remember that the scaling relationfon which pulses. If in such systems the period-2 orbit is strongly at-
Eq. (15) is based is valid only foB very close toB,, and in tracting and if the pulses are applied only at certain moments

the present case the noise component is so strong that t énme, €.g., when crossing a Poincapiane, then jus_t be-
values ofB in Eq. (10) can much exceeB, . Third, Eq.(15) fore the pulse the sys.te'mlwnl already be on the orbit result-
is only approximate and it is not necessarily true that thd"9 from the deterministic dynamics. The occurrence of
probability of the jump in the presence of noise can be obin€ phase jump means then the shift occurs in the exact
tained by averaging the probabilities in the absence of noisBerod-2 sequence of these crossings. The map without reset
[36]. can in turn be interpreted as a model of continuous-time
It should be noted that in both cases of Figh)3and Fig.  Systems driven by ir]cessant noise. In this case the location of
4 the location of maxima of the curves SNR Bsagrees points on the Poincargection will always be somewhat ran-
quite well with the numerical results. Hence the simple adiadom, and the occurrence of the phase jump means only the
batic theories discussed here can be used at least to fit tigerturbation of the overall period-2 pattern, as discussed in

noise intensity for the maximum SR efficiency. Sec. Il A. This greater degree of randomness leads to the
decrease of the effect of periodic forcing on the system dy-
IV. SUMMARY AND CONCLUSIONS namics, as discussed in Sec. Il A, and to the decrease of

) ) ) o . “SNR, although the maximum of SNR occurs for smaller
In this paper we investigated SR in discrete-time dynamiygise strength.
cal systems: the logistic map and the spin map with periodic The spin map investigated in this paper forms a discrete-

forcing and noise. The systems under study model dynamic@lye model of SR in dynamical systems with an attractor
TC systems driven by the subthreshold periodic signal whicty, e ging and multiplicative periodic forcing and noise. We
is too weak to cause the system to cross the assumed thre Jose the parameters so that By~ B,<B<B,+ B in Eq

old. In such systems, in th? presence_of noise the probabilit 10) the two symmetric attractors are stable fixed points and
of the occurrence of certain events like jumps or pulses o

unit length, which indicate TC, is modulated periodically so here is no possibility of jumps between them. The jumps

that it reaches its maximum value once per period. If thedPpear only in the presence of noise, due to the occurrence of

noise strength is chosen properly, the maximum value o]ehe r)oise-indu.ced attrqctor me.rging crisis. Neglecting the
SNR in the time series reflecting the occurrence of TC eventBOSSible chaotic dynamics f@ slightly belowB., the sys-

is expected. In this paper both systems under study ar€m under study is a model of a symmetric bistable system
bistable, since they possess two distinct symmetric stateith the barrier height modulated by periodic forcing and
(phase-shifted period-2 orbits or disjoint attractors before crinoise.

sis), but this bistability plays a quite different role as com-  The examples considered in this paper represent an exten-
pared to conventional SR. The important fact is that jumpssion of the idea of using simple discrete-time systems to
between these two symmetric states can be modeled as Ti@odel SR in more complicated continuous-time systems to
events. It follows that the presence or absence of SR in syshe case of TC systems. It is shown that this kind of SR can
tems studied in our paper depends not just on the systenie realized in systems close to bifurcation points or crises.
considered but on the kind of observed signal as well. InThe maps considered here have many properties generic for
both systems SR was a dynamical effect. This is indicated bghaotic systems. Hence our maps can model many other ex-
the dependence of SNR @»,. This distinguishes our models perimental chaotic systems with period doubling and crises
from the case of nondynamical SR in TC systdi3 which  in which SR can be observed.
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